- 方法:bearing-based approach
- 基于方位的编队控制,利用智能体之间相对方位信息来实现目标编队形状的维持和控制(方位即方向)
- 编队形状定义:inter-neighbor bearings
- 实现效果:Translational and Scaling
过去的一些方法
-
The problem of formation scale control has been studied by the relative-position and distance-based approaches
- 缺陷:
- 当编队伸缩时,relative-position and distance 是变化的,每个 follower 需要估计由 leaders 确定的期望 scaling
- 这两种方法在以往研究,the desired formation scale is constant
-
complex Laplacian matrix
相对完善
the target formation is defined by complex linear constraints that are invariant to the translation, rotation, and scale of the formation
- 缺陷:停留在二维,想要扩展比较难
贡献
-
研究的前提条件:当目标队形能由 inter-neighbor bearings and leader agents 唯一确定
-
使用了一种特殊的矩阵 bearing Laplacian,来表征 the interconnection topology and the inter-neighbor bearings of the formation
-
提出了相应的两条线性的控制律(需要不同的信息输入),针对 double-integrator dynamics(输入加速度,输出位置)。注意,只有 leaders 知道 the desired translational and scaling maneuver,followers 只知道相邻 agents 的信息(相对位置、相对速度)
-
上述控制律能够应对恒定输入干扰和加速度饱和,并分析了其稳定性
Problem Formulation
\[\begin{align} g_{ij} &\triangleq \frac{p_j - p_i}{\|p_j - p_i\|}, \\ &= \begin{bmatrix} \Delta X \\ \Delta Y \end{bmatrix} \\ P_{g_{ij}} &\triangleq I_d - g_{ij} g_{ij}^T. \\ &=\begin{bmatrix} 1-\Delta X^2 & \Delta X\Delta Y \\ \Delta X\Delta Y & 1-\Delta Y^2 \end{bmatrix} \end{align}\]
Bearing-Based Formation Maneuver Control
The target formation denoted by $ G(p^*(t)) $ is a formation that satisfies the following constraints for all $ t \geq 0 $:
\[\begin{align} &(a) Bearing:\ \frac{(p_j^*(t) - p_i^*(t))}{\|p_j^*(t) - p_i^*(t)\|} = g_{ij}^*, \forall (i, j) \in \mathcal{E} \\ &(b) Leader:\ p_i^*(t) = p_i(t), \forall i \in \mathcal{V}_\ell \end{align}\]define the position and velocity errors for the followers as:
\[\delta_p(t) = p_f(t) - p_f^*(t), \quad \delta_v(t) = v_f(t) - v_f^*(t)\]Properties of the Target Formation
-
Bearing Laplacian Matrix: Define a matrix $ \mathcal{B}(G(p^*)) \in \mathbb{R}^{dn \times dn} $ with the $ ij $-th block of submatrix as
\[[\mathcal{B}(G(p^*))]_{ij} = \begin{cases} \mathbf{0}_{d \times d}, & i \neq j, (i, j) \notin \mathcal{E}, \\ -P_{g_{ij}^*}, & i \neq j, (i, j) \in \mathcal{E}, \\ \sum_{k \in \mathcal{N}_i} P_{g_{ik}^*}, & i = j, i \in \mathcal{V}. \end{cases}\]该矩阵同时表征了 the interconnection topology and the bearings of the formation.
-
性质一:
\[\text{Null}(\mathcal{B}) \supseteq \text{span}\{ \mathbf{1}_n \otimes I_d, p^* \} \\\]证明很简单:
\[\mathcal{B}x = \left[ \begin{array}{c} \vdots \\ \sum_{j \in \mathcal{N}_i} P_{g_{ij}^*} (x_i - x_j) \\ \vdots \end{array} \right].\] -
性质二:
\[\mathcal{B} = \left[ \begin{array}{cc} \mathcal{B}_{\ell\ell} & \mathcal{B}_{\ell f} \\ \mathcal{B}_{f\ell} & \mathcal{B}_{ff} \end{array} \right]\]$\mathcal{B}_{ff} \in \mathbb{R}^{dn_f \times dn_f}$ 是对称且半对称的
-
-
Uniqueness of the Target Formation
-
定理一: 当给定可行的 bearing constraints and leader positions,目标编队可以唯一确定,当且仅当 $\mathcal{B}_{ff}$ 非奇异。并且 followers 的目标位置和速度可以确定:
\[\begin{align*} p^*_f(t) &= -\mathcal{B}_{ff}^{-1} \mathcal{B}_{f\ell} p_{\ell}(t), \\ v^*_f(t) &= -\mathcal{B}_{ff}^{-1} \mathcal{B}_{f\ell} v_{\ell}(t). \end{align*}\]证明:
由性质一:
\[\mathcal{B} p^* = 0\]结合性质二:
\[\mathcal{B}_{ff} p_f^* + \mathcal{B}_{f\ell} p_{\ell} = 0\]当 $\mathcal{B}_{ff}$ 非奇异:
\[p_f^* = -\mathcal{B}_{ff}^{-1} \mathcal{B}_{f\ell} p_{\ell}\\ v_f^* = \dot{p}_f^* = -\mathcal{B}_{ff}^{-1} \mathcal{B}_{f\ell} v_{\ell}\]也就是说,目标编队的位置和速度可以由 leaders 唯一确定。
-
其他论文给出的结论:A useful sufficient condition is that the target formation is unique if it is infinitesimally bearing rigid and has at least two leaders
-
-
Target Formation Maneuvering
这一部分定义了目标编队的运动,包括其平移和缩放运动
首先,定义了目标编队的中心以及规模(centroid and scale):
\[\begin{align} c(p^*(t)) &\triangleq \frac{1}{n} \sum_{i \in \mathcal{V}} p_i^*(t) = \frac{1}{n} (\mathbf{1}_n \otimes I_d)^T p^*(t)\\ s(p^*(t)) &\triangleq \sqrt{\frac{1}{n} \sum_{i \in \mathcal{V}} \|p_i^*(t) - c(p^*(t))\|^2}\\ &= \frac{1}{\sqrt{n}} \|p^*(t) - \mathbf{1}_n \otimes c(p^*(t))\| \end{align}\]接着,定义了 the desired maneuvering dynamics of the centroid and scale of the target formation:
\[\dot{c}(p^*(t)) = v_c(t), \quad \dot{s}(p^*(t)) = \alpha(t) s(p^*(t))\]-
定理二:(比较显然)当实现目标编队的运动时,leaders 的速度应是以下形式:
\[v_i(t) = v_c(t) + \alpha(t) [p_i(t) - c(p^*(t))], \quad i \in \mathcal{V}_\ell\]
-
Bearing-based formation control laws
这一小节提出了两种控制律(针对 followers)。第一种控制律,是 based on Constant Leader Velocity,需要相对位置和相对速度信息;第二种控制律,是 based on Time-Varying Leader Velocity,需要相对位置、相对速度以及加速度信息。
-
控制律 1:Constant Leader Velocity
\[u_i = -\sum_{j \in \mathcal{N}_i} P_{g_{ij}^*} \left[ k_p (p_i - p_j) + k_v (v_i - v_j) \right]\] -
控制律 2:Time-Varying Leader Velocity
\[u_i = -K_i^{-1} \sum_{j \in \mathcal{N}_i} P_{g_{ij}^*} \left[ k_p (p_i - p_j) + k_v (v_i - v_j) - \dot{v}_j \right]\]
文中给出了两条控制律收敛性的证明。
Bearing-based formation control with practical issues
-
Constant Input Disturbance 输入噪声干扰
假设 followers 的控制输入存在恒定的噪声,即:
\(\dot{p}_i = v_i, \quad \dot{v}_i = u_i + \mathbf{w}_i\) 针对上述的两条控制律,引入积分项,分别给出了修正:
-
控制律 1:Constant Leader Velocity(修正)
\[u_i = -\sum_{j \in \mathcal{N}_i} P_{g_{ij}^*} \left[ k_p (p_i - p_j) + k_v (v_i - v_j) + k_I \int_0^t (p_i - p_j) \mathrm{d}\tau \right]\] -
控制律 2:Time-Varying Leader Velocity(修正)
\[u_i = -K_i^{-1} \sum_{j \in \mathcal{N}_i} P_{g_{ij}^*} \left[ k_p (p_i - p_j) + k_v (v_i - v_j) - \dot{v}_j + k_I \int_0^t (p_i - p_j) \mathrm{d}\tau \right]\]
给出了条件限制:
\[0 < k_I < k_p k_v \lambda_{\min}(\mathcal{B}_{ff})\]并给出了收敛性证明
-